Ascolaire : 2008/2009

Exercice1:

On considère la suite (U_n) définie par la donnée d'un terme initial entier U_0 et par le procédé suivant :

- Si
$$U_n$$
 est pair, $U_{n+1} = \frac{1}{2} U_n$;

- Si
$$U_n$$
 est impair, $U_{n+1} = 3 U_n + 1$.

Calculer les dix premiers termes de la suite dans les cas suivants : a) $U_0 = 16$; b) $U_0 = 13$;

Exercice2:

Pour chacune des suites définies ci-dessous :

- 1) Donner les quatre premiers termes ;
- 2) Ecrire la relation liant U_4 à U_3 et celle liant U_n à U_{n-1} .

a)
$$\begin{cases} U_0 = 3 \\ U_{n+1} = U_n + n \end{cases}$$
 b)
$$\begin{cases} U_0 = 1 \\ U_{n+1} = \frac{U_n}{2^n} \end{cases}$$

Exercice3:

On considère la suite (V_n) définie par : $V_n = \frac{3n+2}{n+4}$

- 1) Calculer V_0 , V_1 , V_2 , V_{46} et V_{96}
- 2)Montrer que pour tout $n \in IN$ on a : $\frac{1}{2} \le V_n < 3$

Exercice4:

La suite (U_n) est arithmétique. On sait que : $U_9 + U_{11} = -134$ et $U_5 + U_7 + U_9 = -138$ Déterminer le terme U_0 et la raison r de la suite (U_n)

Exercice5:

La suite (U_n) est arithmétique. On sait que : $U_1 + U_7 = 36$ et $U_4 + U_5 = 41$

Déterminer le terme U₀ et la raison r de la suite (U_n)

Exercice6:

Déterminer les suites arithmétiques (U_n) qui vérifient : $U_1 + U_5 = 0$ et $U_2^2 + U_3^2 = 16$

On précisera le terme initial et la raison de telles suites, s'il en existe.

Exercice7:

On suppose que a, b et c sont, dans cet ordre, trois termes consécutifs d'une suite arithmétique.

Déterminer ces nombres sachant que : a + b + c = 120 et abc = 59160

Exercice8:

Soit (W_n) une suite arithmétique de premier terme W₀ et de raison r.

- 1) Sachant que $W_5 = 11$ et $W_8 = 41$; calculer r et W_0
- 2) Sachant que r = -3; $W_1 = 6$ et $\sum_{k=0}^{n} W_k = -90$. Calculer n

Exercice9:

Soit la suite $(U_n)_{n \in IN^*}$ tel que : $\sum_{k=1}^n U_k = \frac{1}{2}(3n^2 + 2n)$

- 1) Calculer les cinq premiers termes de cette suite(U_n)
- 2) Calculer U_n en fonction de n. En déduire que (U_n) une suite arithmétique dont on déterminera la raison.

Exercice10:

Soit la suite (V_n) définie par : $V_0 = 1$

$$V_{n+1} = \frac{V_n}{1 + V_n}$$
; $n \in IN$.

- 1) Calculer V₁, V₂ et V₃. Que peut on conclure ?
- $2) \quad \text{On pose } U_n = \frac{1}{V_n} \ \, \text{Calculer } U_0, \, U_1 \text{ et } U_2.$

Montrer que (U_n) est une suite arithmétique.

3) Exprimer U_n en fonction de n. déduire l'expression de V_n en fonction de n. Retrouver alors V₃.

Exercice11:

Soit la suite (U_n) définie par : $\begin{cases} U_0 = -5 \\ U_{n+1} = \frac{25}{10 - U_n} ; n \in IN. \end{cases}$

1) Vérifier que (U_n) n'est pas une suite arithmétique

- 2) Soit la suite (V_n) définie sur IN par : $V_n = \frac{1}{U_n 5}$
 - a) Montrer que (V_n) est une suite arithmétique
 - b) Exprimer V_n en fonction de n.
- Déterminer un entier naturel n_0 tel que : si $n \in IN$ et $n \ge n_0$ alors $|U_n 5| < 10^{-3}$

Exercice12: Soit (U_n) la suite définie sur IN par : $\begin{cases} U_0 = 0 \\ U_n = U_{n-1} + n \text{ (-1)}^{n-1} \end{cases}$

- 1) Montrer que \forall n \in IN : $U_{n+2} = U_n (-1)^n$.
- 2) On considère les suites (V_p) et (W_p) telles que $\forall p \in IN^*$:

 $V_p = U_{2p-1}$; $W_p = U_{2p}$.

- a) Montrer que W est une suite arithmétique.
- b) Exprimer W_p en fonction de p.
- a) Montrer que \forall $n \in IN^*$: $V_n + W_n = constante$.
 - b) En déduire la somme $S = U_0 + U_1 + ... + U_n$.

Exercice13:

Soit (U_n) la suite définie sur IN par : $U_0 = 3$ et $U_{n+1} = \frac{-1 + 3U_n}{1 + U_n}$; $n \in IN$

- Montrer que la suite (U_n) n'est pas arithmétique.
- Soit la suite (V_n) définie sur IN par V_n= $\frac{1+U_n}{-1+U_n}$.
 - a) Montrer que (V_n) est une suite arithmétique.
 - b) Exprimer V_n puis U_n en fonction de n.
 - Calculer en fonction de n les somme suivantes : $S_n = \sum_{k=0}^n V_k$; $T_n = \sum_{k=0}^n \frac{-2}{-1 + U_k}$.

Exercice14:

Soit $a \in IR$ montrer que $A = (a^2 - 2a - 1)^2$; $B(a^2 + 1)^2$ et $C = (a^2 + 2a - 1)^2$ sont 3 termes consécutifs d'une suite arithmétiques

Soit (U_n) une suite géométrique de raison q. Déterminer la valeur de q et le terme U₃ dans chacun des cas suivants :

- 1) $U_0 = 3$; $U_5 = -96$
- 2) $U_4 + 8U_7 = 0$; $U_5 = 3$
- 3) $U_0 \cdot U_1 \cdot U_2 = -8$; $U_3 \cdot U_4 \cdot U_5 = 128 \sqrt{2}$

Exercice15:

 (U_n) est une suite arithmétique de raison r, et on pose : Pour tout entier n, $V_n = 2^{Un}$. Quelle est la nature de la suite (V_n) ?

Exercice16:

On considère la suite (U_n) définie par $U_0 = 6$ et, pour tout entier naturel n, $U_{n+1} = \frac{1}{2}U_n - 2$.

- Préciser les cinq premiers termes de la suite (U_n).
- 2) Démontrer que (U_n) n'est ni arithmétique, ni géométrique.
- 3) On considère la suite (V_n) définie par $V_n = U_n + 3$.

Démontrer que (V_n) est géométrique.

4) En déduire le terme général de U_n. Préciser la valeur exacte Des termes U₇ et U₈, puis une valeur approchée à 10⁻² près.

Exercice17:

Calculer les sommes suivantes :

a)
$$S = 2 + 4 + 8 + ... + 256$$
 b) $S = \frac{1}{2} - \frac{1}{4} + \frac{1}{8} + ... - \frac{1}{256}$ c) $S = \frac{1}{2} + \frac{1}{8} + \frac{1}{32} + ... + \frac{1}{128}$ d) $S = 1 + 10^{-1} + 10^{-2} + ... + 10^{-7}$

Exercice18:

Résoudre dans IR l'équation : $1 + \frac{x}{x+2} + \left(\frac{x}{x+2}\right)^2 + ... + \left(\frac{x}{x+2}\right)^7 = 0$

Exercice19:

On considère la suite (U_n) définie par ; $U_0 = 1$ et, pour tout entier naturel n, $U_{n+1} = \frac{5U_n - 1}{4U_n + 1}$

- Calculer U₁, U₂ et U₃. En déduire que (U_n) n'est ni arithmétique, ni géométrique.
- On considère la suite (V_n) définie par $V_n = \frac{1}{U_n \frac{1}{2}}$.
 - a) Démontrer que (V_n) est une suite arithmétique.
 - b) Préciser le terme général pour le calcul de V_n.
- En déduire le terme général pour le calcul de U_n.

- 1) Soit X la suite arithmétique telle que $X_{10} = 29$ et $X_0 + X_1 + X_2 + ... + X_{10} = 154$
 - a) Calculer X_0 et la raison r de la suite X.
 - b) Exprimer X_n en fonction de n.
- Soit Y la suite géométrique telle que $Y_1Y_2 = 8$ et $Y_3Y_5 = 256$
 - a) Calculer Y_0 et la raison q de cette suite.
 - b) Exprimer Y_n en fonction de n.
- II/ On considère les deux suites U et V définies sur IN par $U_n = \frac{2^n + 3n 1}{2}$ et $V_n = \frac{2^n 3n + 1}{2}$
- Calculer U_0 ; U_1 et U_2 et V_0 ; V_1 et V_2 .
- Soit la suite $(a_n)_{n \in IN}$ définie par $a_n = U_n V_n$
 - a) Montrer que (a_n) est une suite arithmétique.
 - b) Calculer la somme $S = a_0 + a_1 + a_2 + ... + a_{10}$
- Soit la suite $(b_n)_{n \in IN}$ définie par $b_n = U_n + V_n$
 - a) Montrer que (b_n) est une suite géométrique.

 - b) Calculer la somme $S' = b_0 + b_1 + b_2 + \dots + b_{10}$
- Soit $S_1 = U_0 + U_1 + U_2 + ... + U_{10}$ et $S_2 = V_0 + V_1 + V_2 + ... + V_{10}$
 - a) Vérifier que $S = S_1 S_2$ et $S' = S_1 + S_2$.
 - b) En déduire S_1 et S_2 .

Exercice21:

On suppose que a, b et c sont, dans cet ordre, trois termes consécutifs d'une suite arithmétique.

Déterminer ces nombres sachant que :a + b + c = 243 et $a^2 + b^2 + c^2 = 20133$.

Exercice22:

- Soit la suite (U_n) définie par : $U_0 = 3$ et $U_{n+1} = \frac{3U_n 1}{1 + U_n}$; $n \in IN$. Calculer U_3 et U_4 . (U_n) est elle arithmétique ?
- Soit la suite (V_n) définie par : $V_n = \frac{U_n + 1}{U_n 1}$; $n \in IN$.
- Montrer que (V_n) est arithmétique. Préciser son premier terme V₀ et sa raison r.
- Exprimer V_n et U_n en fonction de n.

Exercice23:

Considère la suite (U_n) définie par : $U_0 = 0$ et $U_{n+1} = \frac{5U_n - 3}{U_n + 1}$

- Calculer U₁, U₂ et U₃. En déduire que (U_n) n'est ni arithmétique, ni géométrique.
- On considère la suite (V_n) définie par $V_n = \frac{U_n 3}{U_n 1}$
 - Démontrer que (V_n) est une suite géométrique
 - b. Préciser le terme général pour le calcul de V_n.
- En déduire le terme général pour le calcul de U_n.

Exercice24:

Déterminer deux entiers positifs a et b tels que les nombres a ; a + 2b ; 2a + b soient en progressions arithmétique et que les nombres $(b + 1)^2$; ab + 5; $(a + 1)^2$ soient en progressions géométrique.

Exercice 25:

Soit (U_n) une suite arithmétique de 1^{er} terme U_0 et de raison r.

- a) Calculer U_{20} et $S=U_1+U_2+\ldots+U_{20}$ sachant que $U_0=-25$ et r=2.
- b) Calculer U_0 et r sachant que $U_3 + U_{11} = 7$ et $U_0 + U_1 + ... + U_{28} = -203$
- Soit (U_n) une suite géométrique de 1^{er} terme U₀ et de raison q.
 - a) Calculer U_5 et $S = U_0 + U_1 + ... + U_5$ sachant que $U_0 = 27$ et $q = \frac{2}{2}$
 - b) Calculer n et U_n sachant que $U_0 = -2$, q = 2 et $U_0 + U_1 + U_2 + ... + U_{n-1} = -254$

Exercice26:

- Soit (U_n) une suite arithmétique définie sur IN par $U_0 = 1$ et $U_6 = -11$
 - a) Calculer le 1^{er} terme U₀ et la raison r de la suite (U_n)
 - b) Exprimer U_n en fonction de n.
- Soit la suite (V_n) définie par $V_n = \left(\sqrt{3}\right)^{U_n}$ pour tout $n \in IN$.
 - a) Calculer V_0 et V_1 .
 - b) Montrer que (V_n) est une suite géométrique de raison $q = \frac{1}{2}$
- $S_n = V_0 + V_1 + V_2 + \ldots + V_n \text{ et } P_n = V_0 \ . \ V_1 \ . \ V_2 \ . \ \ldots \ . \ V_n$ Pour tout $n \in IN$, on pose
 - a) Exprimer S_n en fonction de n
 - b) Montrer que \forall n \in IN on a $P_n = \left(\sqrt{3}\right)^{l-n^2}$